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A simultaneously developing laminar f low between parallel plates was studied. The wall 
temperatures were uniform and equal. A linear profile was used for the axial component 
of the velocity and then the energy equation was solved by the method of similarity. The 
expression obtained for the Nusselt number in this manner contained terms involving wall 
shear stress. In order to eliminate these terms, the velocity profile was approximated by a 
second-degree polynomial, which finally led to a closed form expression for the Nusselt 
number in terms of x* and Pr. The prediction was compared with more exact existing 
results, which indicated the accuracy of the present analysis. 
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I n t r o d u c t i o n  

Laminar flow exists in the majority of compact heat exchangers 
because of their small hydraulic diameters. When the flow 
channel length is short, the effects of the entrance region, the 
heat transfer coefficient, and the friction factor cannot be 
neglected. 

The Graetz solution, which assumes a hydrodynamically 
developed flow, is not suitable for gases or even liquids with a 
Prandtl number of less than 5 unless an appropriate unheated 
starting length is present. Moreover, the series solution of 
Graetz converges very slowly as x* approaches zero. For 
example the first 121 terms of the series are insufficient 
to accurately determine the Nusselt number for x*<  10-4.1 
L6v~que 2 overcame this difficulty by employing the flat plate 
solution as an asymptotic approximation near the point where 
the step change in the wall temperature occurs. 

For  gases and liquids with a low Pr (say, less than 5) entering 
a flow channel with a wall temperature other than the fluid 
inlet temperature, a simultaneously developing flow will prevail. 
To solve this problem the velocity components (u, v) have to 
be determined from continuity and momentum differential 
equations. Among the methods used to solve these equations 
is the integral method first used by Schiller 3 for the circular 
tube and parallel plate channel. He used a parabolic velocity 
distribution in the boundary layer and Bernoulli's equation in 
the inviscid core to determine the pressure distribution in the 
axial direction. This method yields a discontinuous solution 
for the gradients of velocity and pressure distribution. To 
alleviate this problem, Langhaar 4 proposed a method of 
linearization for a circular tube. He linearized the nonlinear 
inertia terms of the momentum equation as follows: 

c~u c~u 
u - -  + v - -  = v f l 2 ( x ) u  (1) 

c3x Oy 

Langhaar's approach was used by Han 5 for parallel plates. 
The combined entry length problem for the circular tube was 
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first investigated numerically by Kays. 6 He used the Langhaar 
velocity profile for axial velocity distribution and neglected the 
radial velocity component and axial heat conduction. Kays 
made calculations for Pr=0.7.  Later, Goldberg 7 extended 
Kays's solution to cover a range of Prandtl numbers from 0.5 
to 5. 

Simultaneous development of temperature and velocity 
profiles in the entrance region of parallel plates was first studied 
by Sparrow 8 for equal wall temperatures. He used Schiller's 
velocity profile and employed the Karman-Pohlhausen method 
to obtain the Nusselt number. The results reported cover a 
range of Prandtl numbers from 0.01 to 50. 

An all-numerical finite-difference method was used by Hwang 
and Fan 9 for the parallel-plate combined-entry problem. Their 
results cover Prandtl numbers from 0.01 to 50. The same 
method was used by Hornbeck 1° for flow in a circular duct. 
He obtained the solutions for Pr=0.7,  2, and 5. 

In the present analysis, the simultaneous development of 
velocity and temperature profile between parallel plates in 
laminar flow is studied. A similarity method employing Schiller's 
velocity profile was used to solve the energy equation. The fluid 
is considered incompressible, with constant physical properties, 
and the wall temperatures are assumed to be uniform and equal. 
Longitudinal conduction and viscous dissipation are also 
neglected. 

A closed-form expression was obtained for the Nusselt 
number as a function of x* and Pr. The Nusselt numbers were 
compared with those obtained by more accurate methods for 
Pr=0.72,  10, and 50. The results will be useful for fluids other 
than liquid metals. 

A n a l y s i s  

Consider a simultaneously developing laminar flow in the 
entrance region between parallel plates. The assumption of 
incompressible flow and constant fluid properties allows the 
continuity and energy equation to be written as 

~T t3T ~ZT 
u - - + v  - - = c o  - -  (2) 

t~X ~y ~y2 
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and 

du dv 
- - +  = 0  (3) 
~x ~y 

Using the Von Mises transformation (x, y ~ x, qJ) reduces the 
energy equation to 9 

= a  - -  (4) 

The continuity equation is automatically satisfied by employ- 
ing the stream function: 

= j ]  u dy (5) 

The familiar linear profile is approximated for u and expressed 
a s  

~w(X) 
u = y (6a) 

P 

Integration of Equation 5 and using Equation 6a yields 

Using Equation 6b, we can write Equation 4 as 

0s - d0 01/2 (Ta) 

in which s is defined as 

ds=ot(2zw~(px)) U2 dx (7b) 

By employing a similarity variable defined as 

/ 4 \ 1 / 3  
rl=O'/2~9s) (8) 

we obtain the following ordinary differential equation from 
Equation 7a: 

d2T dT 0 
an 2 + 3n2 d~ = (9) 

In Equation 9, both of the convective terms of Equation 4 are 
included. Equation 9 can be integrated subject to the following 
boundary conditions: 

r /=0; T=To; t / ~  oo; T = T  i (10) 

The solution is 

T-To_ 1 f] 
T i - T  o 0.893 e x p ( -  r/a) dr/ (11) 

The local Nusselt number, Nu2, may be obtained using the 
temperature distribution given in Equation 11 

Nu2 - - (aT/tgy)y = 0 de 
T ° - T i  (12) 

Nu 2 - 
0.893[9~l~f~z,(x)t/2dx] '/3 

On the other hand, the heat transfer coefficient may be defined 
in terms of (T o -  Tin) instead of (T o -  Ti). If we denote (T o -  T m 
by h~, the corresponding Nussett number will be 

hide - ( K ~ y ) o d e  
Nul - - (13) 

K K(T  o - Tin) 

The dimensionless mean temperature of fluid, 0m, is readily 
obtained by performing an energy balance on the fluid, which 
results in 

fo 0 m = 1 --4 Nu 2 dx* (14) 

The two local Nusselt numbers are related through 

Nu 2 
Nul - (15) 

0r. 

The average Nusselt number over length x from the entrance 
is given by 

i q09 NUlm=4x ~ 

N o t a t i o n  

a One half channel width, m 
d e Hydraulic diameter (=  4a), m 
K Thermal conductivity, W/m K 
Nu~ Nusselt number defined by Equation 13, 

dimensionless 
Nu2 Nusselt number defined by Equation 12, 

dimensionless 
Pr Prandtl number, dimensionless 
Re Reynolds number, dimensionless 
S Variable defined by Equation 7, m3/s 3/2 
t Defined by Equation 27, dimensionless 
T Temperature, K 
G Uniform inlet velocity, m/s 
Ut Centerline velocity, m/s 
UI* Centerline velocity (=  U1/G), dimensionless 
u Axial velocity component, m/s 
v Normal velocity component, m/s 
x Axial distance, m 

x + Defined as x/(de~.e), dimensionless 
x* Defined as x/(deRePr ), dimensionless 
y Normal distance, m 

Greek 
O~ 

6 
6, 

V 

P 
"~w 
0 

letters 
Thermal diffusivity, m2/s 
Defined by Equation 1, m -  
Velocity boundary layer thickness, m 
Thermal boundary layer thickness, m 
Similarity parameter (Equation 8), dimensionless 
Viscosity, N.  s/m 2 
Kinematic viscosity, m2/s 
Density, kg/m 3 
Wall shear stress, N/m 2 
Dimensionless temperature [ = ( T -  To)/( T i -- To) ] 

Subscripts 
o Wall condition 
i Inlet condition 
m Mean value 
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Figure 1 
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Distribution of wal l  shear stress along the f low channel 

The main task remaining is to develop an appropriate 
expression for the wall shear stress, which will lead to a 
closed-form expression for the Nusselt number when substituted 
in Equation 12. A simple and convenient expression for the 
velocity profile in the boundary layer was first used by Schiller) 
It gives reasonably good agreement with Schlichting's more 
exact result: 

This equation satisfies the conditions 

u=0;  y = O  

u = U ~ ;  y = ~  (18) 
Ou 
- - = 0  
gy 

The velocity distribution in Equation 18 allows us to obtain 
the following results from the continuity and momentum 
integral equations 8: 

3 a 2 (Ux- tT)(9U1-7U)  dU,  
dx = - -  (19) 

10 v U 2 

and 

In nondimensional form, Equation 19 is written as 

3 (U'~- l ) (9U'~/7)  
dx + - dU* (21) 

160 UT ~ 

It is clear that such an expression does not satisfy the condition 
of fully developed flow because dU*/dx  ÷ does not approach 
zero as U* ~ 1.5. Equation 21 may be integrated to yield 

x+ = 1 6 ~ ( 9 U * - 1 6 1 n  U~'-  U7~-2 ) (22) 

It is possible to obtain a closed-form expression for N u  2 by 
using Equation 22. However, to derive an explicit form of 

, 2  solution for Nut, we will now use the approximation of U~ "~ 1, 
which is only valid close to the entrance. Equation 22 then 
becomes 

U~ - 1 = (23) 

The shear stress at the wall is defined as 

~u -=2# U1 (24) 
~w=/l ~yyr= ° ~ -  

Employing Equations 20 and 23 yields 

T~- (25) 
3a ~ +  

Substituting for ~ in Equation 12 and integrating gives 

(1 + x/160"]pr t/2x*~'~ 

Nuz=0.242 \ ,,f3 J x*"~Pr -~/6 (26) 

35,/3 
in which x* is the reciprocal of the Graetz number. 

In order to obtain an expression for Nu~, we must specify 
the dimensionless mean temperature. Substituting Equation 26 
into Equation 14 and integrating gives 

0 m = 1 -- 1.3276944 Pr -  ~/s(3ts - t 2) (27) 

where 

t l - l + l ( l ~  0 ,1/2~1/3 
=L3 5 - - x * P r )  ] (28) 

For the purpose of comparing this expression with the more 
exact results available in the literature, Nu~m has to be 
determined. Combining Equations 16 and 27 yields 

NUlm = 1 ln[1 -- 1.3276944 Pr-  a/s(3ts- t2)] - 1 (29) 
4x* 

The seven significant digits in Equations 27 and 29 reflect the 
fact that (a) close to the entrance, 0 m is very close to 1.0, and 
(b) as indicated by Equation 16, a small error in 0m will be 
pronounced when NUlm is calculated. 

Results and discussion 

The results of calculation are shown in Figures 1-4. Figure 1 
compares the approximate distribution of the nondimensional 
wall shear stress given by Equation 25 to the more accurate 
results obtained by the combination of Equations 20, 22, and 24. 

The results used for the comparison of the Nusselt numbers 
are those of Hwang and Fan, 9 which are given in the monograph 
by Shah and London} These results were obtained from an 
all-numerical finite-difference solution of the combined entry 
problem for parallel plates with equal temperatures. The values 
of Nu~,, were tabulated and also graphically represented on 
page 191 of Ref. 1 for Pr=0.1, 0.72, 10, and 50. As indicated 
by Equation 29, the Nusselt number in a simultaneously 
developing flow depends on both x* and Pr. Hence the 
representation of Equation 29 is for three different values of 
Pr: 0.72, 10, 50, and excluding Pr=0.1. As explained before, 

Figure 2 
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Figure 3 Average Nusselt number (Nu,m) for Pr=10.0 

the present analysis is not applicable to fluids with low Prandtl 
numbers because the approximation of linear velocity profile 
in the thermal boundary layer breaks down. The results of 
Equation 29 and the more exact results of Hwang and Fan are 
presented in Figures 2-4 for Pr = 0.72, 10, and 50. 

Also indicated in these figures are the values of the Nusselt 
number for the hydrodynamically developed and thermally 
developing flow. These values were calculated by Shah, ~1 using 
121 terms of the Graetz series for x*>10  -4. The values 
for x*<10  -4 were determined from the extended L6v~que 
solution. In a thermally developing flow the Nusselt number 
is independent of the Prandtl number, so its representations in 
Figures 2-4 are identical. These figures show that this result 
approaches the more exact result indicated by the dashed line 
as Pr increases. In fact, for Pr = 50, the difference is very small, 
even at low values of x*. It is small because of rapid development 
of the velocity boundary layer, compared to that of the thermal 
boundary layer, for fluids with high values of Pr. This condition 
justifies the assumption of hydrodynamically fully developed 
flow. 

Figures 2-4 also indicate reasonable agreement between the 
predictions of Equation 29 and the more exact results reported 
in Ref. 1. This good agreement for the heat transfer prediction 
exists even after the velocity profile becomes parabolic, despite 
the inaccuracy inherent in the chosen velocity profile, Equation 
17, in this region. The hydrodynamic entry length represented 
in Figures 2-4 by X~IFD were calculated from the criterion 
of XI~FD=0.011. This value for the beginning of the hydro- 
dynamically fully developed flow was used by Bodoia. 12 

Generally speaking, Equation 29 predicts values that are 
higher than the more exact results of Ref. 1. The difference 
depends on the values of Pr and x*. The error increases as Pr 
decreases, which is related to the unjustifiable approximation 
of linear velocity profile used in the energy equation, In 
addition, the larger disagreements resulting from increasing x* 
are attributed to the inaccurate representation of the parabolic 
velocity profile by the second-degree polynomial used in this 
analysis to determine the shear stress at the wall. 

Finally, due to two main approximations used in this 
analysis, the Nusselt number predicted by Equation 29 does 
not approach the fully developed value of 7.54 as x* --* oo. Hence 
Equation 29 is not recommended for use with an x* larger than 
the values shown in Figures 2-4. Moreover, the present analysis 
is not suitable for fluids with low Prandtl number, such as 
liquid metals. 

Conclusions 

A closed-form expression was obtained for the Nusselt number 
in simultaneously developing flow between parallel plates with 

Figure 4 Average Nusselt number (NUlm) for Pr=50.0 

the same uniform wall temperature but different from the fluid 
inlet temperature. The energy equation was solved by similarity 
methods, and a second-degree polynomial was employed for 
the velocity profile in order to determine the shear stress at the 
wall. 

The prediction by the present method was compared to 
existing, more exact results obtained by an all-numerical 
method. Reasonable agreement was observed. It is recommended 
that the prediction method described here be used to predict 
the heat transfer in a simultaneously developing laminar flow of 
gases and l iquids--other than liquid metals--between parallel 
plates at the same uniform temperature. 
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